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Abstract—Phosphinite- and phosphite-based type I palladacycle-catalyzed additions of arylboronic acids with aldehydes, o,B-unsat-
urated ketones, a-ketoesters, and aldimines are described. Our study showed that readily available phosphinite- and phosphite-based
type I palladacycles could possess higher catalytic activity than phosphine-based palladacycles and were highly active, practical
catalysts. Our study may pave the road for development of optically active phosphinite- and phosphite-based palladacycles for

asymmetric catalysis.
© 2007 Elsevier Ltd. All rights reserved.

Palladium-catalyzed cross-coupling reactions, for exam-
ple, the Suzuki coupling, the Stille coupling, the Heck
coupling, the Sonogashira coupling, and the amination
of aryl halides with amines, etc., have emerged as pow-
erful tools for organic synthesis over the past decades.'-?
Extensive studies established that there are three key ele-
mentary steps in the catalytic cycles of Pd(0)-catalyzed
cross-coupling reactions:! oxidative addition of Pd(0)
with an aryl halide to form Pd(II) complex; transmetala-
tion of the Pd(II) complex with an organometallic
reagent to form a diorganopalladate complex; and
reductive elimination of the diorganopalladate complex
to form the cross-coupling product and regenerate the
Pd(0) catalyst (Fig. 1). In our laboratory, we are inter-
ested in developing highly active transition metal cata-
lysts and new reactions/processes to further heighten
the efficiency of transition metal catalysis.>° Based on
our understanding of the generalized mechanism
depicted in Figure 1, we envisioned that the individual
elementary steps in each catalytic cycle might be con-
trolled. Such a control, especially combined with other
bond forming processes, could provide us opportunities
to develop new reactions/processes and thus make the
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Figure 1. Generalized mechanism for Pd-catalyzed cross-coupling
reactions.

already powerful transition metal-catalyzed cross-
coupling reactions be even more powerful for organic
synthesis. Toward this end, we have recently documen-
ted Pd(0)/z-BusP-catalyzed Suzuki cross-coupling of
dihaloarenes with arylboronic acids,” a process that
relies on the controlling of oxidative addition step. We
have also reported Pd-catalyzed reaction of o-dihalo-
arenes and alkynes with hindered Grignard reagents to
form substituted fluorenes and indenes,® cyclization pro-
cesses that combines the control of the transmetalation
step with sp® C—H activation.

Our study also included the control of a reductive
elimination elementary step. We envisioned that by con-
trolling the reductive elimination process, anionic four-
electron donor-based (type I) palladacycles,”® rather


mailto:qiaohu@mail.csi.cuny.edu

5284 P. He et al. | Tetrahedron Letters 48 (2007) 5283-5288

C—E’dI
(Insertion)
m f ke \,

dII

; d" _p d”

(Reductive /vAr
Transmetalation, \

Elimination) ( " ion) R R
M-Y

kAr Ar-M

Cross-CoupImg Addition Reaction
Reaction Cycle Cycle

Figure 2. Cross-coupling reactions versus addition reactions for type I
palladacycle catalysts.

than functioning as cross-coupling catalyst precursors,
could catalyze addition reactions of organometallic
reagents such as arylboronic acids with carbonyl group-
containing compounds and analogs (Fig. 2). We have
demonstrated that phosphine-based type I pallada-
cycles 1-3 (Chart 1) were indeed effective catalysts for
addition reactions of arylboronic acids with o,-unsatu-
rated ketones, aldehydes, and a-ketoesters.® Although
palladacycle 3 was found to be a very efficient catalyst
for such addition reactions, it was prepared from non-
commercially available phosphine precursor. In addi-
tion, as the catalytic activity of a type I palladacycle
is expected to be influenced by the steric and electronic
nature of palladium-bound aromatic part and the
P-ligand part, we envisioned that phosphine-based pal-
ladacycle 3 may not be the one with the highest catalytic
activity and type I palladacycles with other Pd-bound
aromatic parts and P-ligand part might possess higher
catalytic activity than that of 3. These considerations
prompted us to examine palladacycles derived from
readily available and more m-acidic phosphinites and
phosphites, that is, 4-7 (Fig. 3),'®!! for addition reac-
tions of arylboronic acids with carbonyl group-contain-
ing compounds. In this Letter, we report that
phosphinite- and phosphite-based palladacycles could
indeed be more active than phosphine-based pallada-
cycle 3, and are highly efficient catalysts for the addition
reactions of arylboronic acids with aldehydes, a-keto-
esters, o,fB-unsaturated ketones, and aldimines.

We began our study by comparing the catalytic activities
of phosphinite-based palladacycles 4, 5 and phosphite-
based palladacycles 6, 7 with that of phosphine-based
palladacycle 3, under the reaction conditions we previ-
ously established (toluene as the solvent and K5PO, as
the base).” The room temperature addition of phenyl-
boronic acid with 2-nitrobenzaldehyde was first studied
@(\Pd OAc

PT-BU2 a\\PPhg
Pd Pd_
o-Tolyl” “o-Tolyl O OAc E‘% OAc

1 2 3

Chart 1. Phosphine-based type I palladacycles.
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Figure 3. Phosphinite- and phosphite-based type I palladacycles.

Table 1. Catalyst comparison®

5% palladacycle

OH
_ Sepdladecyle |~ ph
Toluene, K3zPOy, rt R

Reaction time Conversion® (%)

PhB(OH), +

CHO
Cl

Entry Palladacyde R

1 3 NO, 30 min 88
2 4 NO, 30 min 100
3 5 NO, 30 min 100
4 6 NO, 30 min 49
5 7 NO, 30 min 100
6 3 OCH; 4h 26
7 4 OCH; 4h 72
8 5 OCH; 4h 59
9 7 OCH; 4h 83

#Reaction conditions: aldehyde (1.0 equiv), phenylboronic acid
(2.0 equiv), toluene (2 mL), K3;POy (1 equiv), room temperature.
®Based on '"H NMR.

and our results are listed in Table 1.!2 We found that
palladacycles 4, 5, and 7 exhibited a higher catalytic
activity than 3 (Table 1, entries 1-3, 5, and 6). Lower
catalytic activity was observed for phosphite-based pal-
ladacycle 6 (Table 1, entry 4), suggesting that the steric
hindrance of Pd-bound aromatic part also plays an
important role for the catalytic activity of palladacycles.
We have further employed less reactive 2-methoxybenz-
aldehyde as substrates and palladacycles 4, 5, and 7
again exhibited a higher catalytic activity than 3, with
phosphite-based palladacycle 7 being the most active
one (Table 1, entries 6-9).

Having established that phosphinite-based palladacycles
4, 5 and phosphite-based palladacycle 7 possess a higher
catalytic activity than phosphine-based palladacycle 3,
we next briefly examined the addition of arylboronic
acids with aldehydes, o,p-unsaturated ketones, and o-
ketoesters by employing palladacycles 4, 5, and 7 as cat-
alysts. Our results are listed in Tables 24, respectively.
We found palladacycles 4, 5, and 7 in general were
highly active catalysts for these addition reactions. High
yields were observed for tested aldehydes including aro-
matic and aliphatic ones (Table 2),'>'3 o, p-unsaturated
ketones including cyclic and acyclic ones (Table 3),'#
and a-ketoesters (Table 4).!5 In terms of substrate reac-
tivity, o,p-unsaturated ketones were found to be the
most reactive, with aldehydes being next and a-keto-
esters the least reactive, a trend similar to what was
observed in our study with palladacycle 3 as catalyst.

We have also examined the addition reaction of aryl-
boronic acids with aldimines and our results are listed
in Table 5.'%!7 We found 4 and 7 were also effective
catalysts for N-Ts- and N-Bs-containing aldimines in
general. We found that when aldimines derived from
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5% Palladacycle OH
AB(OH), + RCHO AR
K3POy4/Toluene, rt
Entry ArB(OH), RCHO Palladacycle Time (h) Yield® (%)
1 ¢ )-B(OH), 0_N<>-CHO 7 1 94
2 ¢ )-B(OH), 0,N<_)-CHO 7 5 86°
CHO
3 -B(OH 5 0.5 91
@ ( )2 @:Noz
CHO
4 -B(OH T 7 0.5 94
rB(OH): ONo,
CHO
5 B(OH 7 0.5 92
~(0-B(OH), ONo,
CHO
6 MeO B(OH 7 0.5 93
@ ( )2 @:Noz
CHO
7 S B(OH), @[Noz 7 0.5 92
8 (O-B(OH) clI—{)-CHO 7 48 88
9 ¢ )-B(OH), CHO 7 36 84
10 {_-B(OH), —{-cHo 7 48 91
1 {O-B(OH), MeO—_)-CHO 7 48 90
CHO
12 -B(OH 4 14 93
O-BOH), CCock,
CHO
13 { >-B(OH 7 10 90
(O-B(OH) CCocr,
14 ¢ )-B(OH), {»CHO 7 48 93
15 (O-B(OH), J_cHo 7 48 90
#Reaction conditions: aldehyde (1.0 equiv), arylboronic acid (1.5-2.0 equiv), K3POy4 (1-3 equiv), toluene (2 mL), room temperature.
®Isolated yields (average of two runs).
¢5 mmol scale, 1% 7 was used.
Table 3. Palladacycles 4/7-catalyzed 1,4-addition of arylboronic acids with a,B-unsaturated ketones®
O o, Ar O
Ar-B(OH), , RMKR' 5% Palladacycle R)\F"KR'
K3POy4/Toluene, rt
Entry ArB(OH), Q Palladacycle Time (h) Yield® (%)
RNR
-B(OH 1%
1 {)-B(OH), o ph 4 0.5 95
. o
2 {-B(OH), PH~Ph 7 0.5 98
3 {-B(OH) 2 7 5 96°
2 Ph™>""Ph
4 MeO-<)-B(OH) Q 7 0.5 94
2 Ph”™>""Ph '

(continued on next page)
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Table 3 (continued)

Entry ArB(OH), R/\N“O* o Palladacycle Time (h) Yield® (%)
5 5BOH) or 7 05 93
6 {O-B(OH), PhA\/o\ 7 0.5 91
7 O-BOH), 2. 7 1 98
8 {O-B(OH), o 4 24 92
9 {-B(OH), xo 7 24 92

#Reaction conditions: ketone (1.0 equiv), arylboronic acid (2.0 equiv), 4 or 7 (5%), K3POy (1 equiv), toluene (2 mL), room temperature.

®Isolated yields (average of two runs).
©The reaction was carried out at a 4 mmol scale, 1% 7 was used.

Table 4. Palladacycles 4/7-catalyzed 1,4-addition of arylboronic acids
with a-ketoesters®

OH
R
KgPOy/Toluene, it, 481 Ar" CO,Et

5% Palladacycle

0]
ArB(OH)2 + RACOQEt

Table 5. Palladacycles 4/7-catalyzed addition reactions of arylboronic
acids with aldimines®

NR
Py 9y 5% Palladacycle NHR

ArB(OH + Ar A pn
(OH) KsPO/Toluene, i, 24-48h Ar~ AT

Entry  ArB(OH), R Palladacycle  Yield® (%)
I -B(OH), Ph 4 83

2 — )-B(OH), Ph 7 68°

3 MeO<_>-B(OH), Ph 7 94

4 @B(OH)Z Ph 7 92

5 S B(OH), CH; 7 60

#Reaction conditions (not optimized): o-ketoester (1.0 equiv), aryl-
boranic acid (2.0 equiv), K3PO4 (3 equiv), toluene (2mL), room
temperature.

®Isolated yields (average of two runs).

€72% conversion.

p-nitrobenzaldehyde were used as substrates, (4-nitro-
phenyl)phenylmethanol was isolated in 21-29% yields
(Table 5, entries 6-9), suggesting that the aldimines
likely underwent hydrolysis during the reaction. We also
found that the aldimine derived from aniline and benz-
aldehyde was not reactive, with either 4 or 7 as catalyst.

In summary, we have demonstrated that readily avail-
able phosphinite- and phosphite-based type I pallada-
cycles 4, 5, and 7 exhibited a higher catalytic activity
than that of phosphine-based type I palladacycle 3,
and were highly active catalysts for the addition reac-
tions of arylboronic acids with aldehydes, o,B-unsatu-
rated ketones, a-ketoesters, and aldimines. Our study
may pave the road for the development of optically
active phosphinite- and phosphite-based type I pallada-
cycles for asymmetric catalysis.'® Work toward this
direction is actively underway.

’

Entry ArB(OH), R Ar Pallada-  Yield®
cycle (%)
1 ¢ )-B(OH), Bs CeHs 7 80
2 —/ )-B(OH), Bs Cg¢Hs 7 90
3 —)-B(OH), Bs CHs 4 87
4 — >-B(OH), Bs p-MeO-C¢H, 7 68
5 MeO-¢_»B(OH), Bs p-MeO-C¢H, 7 79
6 ¢ )-B(OH), Bs p-NO»CeHy 7 67°
7 — )-B(OH), Bs p-NO,CeH, 7 63°
8 ¢ )-B(OH), Ts p-NO,-CeHy 7 69°
9 — )-B(OH), Ts p-NOCeH, 7 72
10 ¢ )-B(OH), Ph C¢Hs 4or7 0

#Reaction conditions (not optimized): aldehyde (1.0 equiv), aryl-
boronic acid (2.0 equiv), K3PO, (1 equiv), toluene (2 mL), room
temperature.

®Isolated yields (average of two runs).

€ (Aryl)(4-nitrophenyl)methanol was also isolated in 21-29% yields.
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